Detector constraints from semi-inclusive reactions

Thomas Burton
EIC R&D Simulation Workshop
Brookhaven National Lab
Monday 8th October 2012

What do we learn?

Hadron 'tags' struck parton: flavour separation of spin

Key EIC strengths for SIDIS

- Luminosity: precise, multi-dimensional measurements
- 2. Polarisation: spin-dependent functions
- 3. High-E (vs. fixed-target): access sea

The machine gives us potential ...but need the detector for delivery

→ EIC strengths are also demands on detector performance

El(sea)

- Flavour + TMDs already investigated in valence region
 - we will improve there (luminosity!)
 - ...but sea is where we make novel measurements
- \longrightarrow Need low x (~10⁻⁴) and Q^2 lever arm @ low x

x-Q² correlated: small x implies small Q²

→ want precise reconstruction to small (x, Q²)

Q²-x resolution

- Using electron, Q² precision depends on electron momentum precision
 - ► small p limit is due to scattering → low material
 - ► large p limit is due to p resolution → good tracking

Q² lever arm needs span in y

Q²-x resolution

Electron method: low y limited by resolution

Can use <u>hadron method</u>: hadron acceptance and momentum resolution become important

Radiative corrections

- Measured (x, Q²) not actual (x, Q²)
- understood from HERA
 - need it in MC to account for effects

Azimuthal acceptance

Spin: measure azimuthal distributions

 Want uniform acceptance around gamma - as close to hermetic as possible

Flavour separation

Strangeness

- Poorly known, unpolarised & polarised
 - separate (anti)strange from up/down
 - good K separation from π + p

Hadron identification

- Need good PID to pick out the kaons
 - Good ID even more important than efficiency
 - Needs good p resolution (see smearing talk)

Where do we find hadrons?

Depends on e-p energy

Pion, $Q^2 > 0.1$, z > 0.1, y > 0.01

Mostly forward

Mostly backward

250 GeV

20 GeV

Where do we find hadrons?

Depends on e-p energy

Kaon, $Q^2 > 0.1$, z > 0.1, y > 0.01

Where do we find hadrons?

- ... everywhere!
- Bottom line: tracking + PID need to cover as wide an η + p range as possible

 What does this say regarding offset vs.
 symmetric IP?

Charm, bottom

- e.g. gluon Sivers via D⁰ pairs
 - D (& esp. decay products) span wide range in n
- excellent vertex resolution (~few microns)

statistics vs. systematics

- High luminosity → measure **f** $(x, Q^2, z, p_T[, \varphi])$
- Even then, often systematicslimited
- **MUST** control systematics well
 - e.g. current polarisation @ RHIC: 5% systematic
 - electron polarisation?
 - **luminosity?**
 - detector effects?...

Summary

- Good PID (π/K/p separation) crucial
 - wide momentum range
 - good momentum resolution
 - large acceptance
- Good understanding of systematics